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The very large number of states arise in a typical Monte Carlo simulation of a liquid was 
replaced by a relatively small number of states by discretizing the energy distribution function. 
We found that the subdominant eigenvalues of transition matrices defined over these states 
only weakly depend on the number of states used in the representation. Transition matrices 
defined over distribution functions with 276 states were then used to approximate the true 
transition matrices underlying the force-bias and Metropolis Monte Carlo algorithms. We 
examine the influence of limited state-to-state accessibility, and of distortion in the force-bias 
biasing function, on a variety of properties, most notably the subdominant eigenvalues of the 
transition matrices and the stochastic characteristics of the developing distribution function. 
Our results suggest that because of the inevitable presence of both limited accessibility and 
distortion in the biasing function, the force-biased algorithm with a moderate degree of bias- 
ing is best. <:’ 1986 Academic Press, Inc. 

Over the past five years we have seen the development of a number of algorithms 
Cl-61 whose purpose is to improve the convergence rate of Monte Carlo 
simulations, relative to rates that are obtainable with the now classical Metropolis 
method [7]. The force-biased method developed by Berne and his colleagues 
[IL-?], is one of the most widely applied of these methods. Unlike the Metropolis 
method, in which attempted moves with trial particles are made in random direc- 
tions, in force-biasing, trial moves are biased in the direction of the force vector and 
(if nonzero) the torque-vector on the particle. This bias is accounted for in the 
acceptance-rejection step of the algorithm through the condition for detailed 
balance. 

Detailed balance ensures convergence to the correct distribution function in the 
limit of an infinite number of steps. An actual simulation is of course terminated 
after some finite number of steps, with the assumption that the results obtained are 
sufficiently close to their limiting values for the purpose at hand. Because of finite 
termination, there will in principle always be a discrepancy (which may or may not 
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be numerically significant) between the results obtained and their true values. Since 
different algorithms sample configuration space differently, we can, at least in prin- 
ciple, expect systematic differences upon finite termination depending on the 
algorithm used. In a previous article [6], it was found that the force-biased method 
with the biasing fully turned on ie with A,= 1 (see references [i-3] and Eq. (9)) 
resulted in a very slow convergence rate for the heat capacity of hot S72 [S] water. 
This result, previous references in the literature that suggest at least the potential 
for this [S], and the foregoing considerations, prompted the present article. 

What is attempted here, is to further our understanding of the fundamental 
basis on which both Metropolis and force-biased Monte Carlo rest. Specifically, we 
would like to understand how these algorithms influence convergence rates and the 
stochastic characteristics of the Markov chains that they generate. 

The remainder of this article is organized into three sections. The Theory section 
presents the problem and describes how the one-step transition matrices and their 
convergence-related properties are obtained. In the Results section, the values of 
these properties and their implications vis-a-vis convergence are reported and dis- 
cussed, as are the stochastic characteristics of the corresponding Markov chains. In 
the Discussion section the main findings of this work are briefly summarized and 
descriptively explained, and the question of their relevance to actual simulations on 
liquids is discussed. 

THEORY 

a. Construction of the Basic One-Step Transition A4atri.x 

The elements of the transition matrix l/piiil, defined on A4 states i= 1, 2, 3,..., A4, 
give the probability of the system’s undergoing a transition from state “i’ to 
state‘j.” The expressions for the pis are obtained from the condition of detailed 
balance, which requires that the number of systems in the ensemble making the 
transition i to j, be equal to the number making the reverse transition j to i. This 
condition ensures that any arbitrary initial distribution function will eventually 
converge to the limiting distribution [7]. Thus, if {,fi} is the normalized limit 
(equilibrium) distribution of the Markov chain, detailed balance requires that: 

L. PQ =.fiP/iY i#j. (1) 

Writing pij as the product of an a priori, normalized transition probability p$, 
times the acceptance probability a+ gives 

ati f.p” -=l-z!L 
uji ,fiP$’ 

i#j. (2) 
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When the right-hand side of Eq. (2) is greater than 1, we set aG = 1, so that 

fiP$ 
‘ji=J;$’ i #j. (39 

Otherwise, set aii = 1, so that 

Thus we get the condition: 

,h 
Pji 32 

h& 

pij= 
frP$ 

fjP$ 
p;, --> 

“fiP,T 

The diagonal matrix elements are obtained from the stochastic requirement 

Pil = 1 - f pg. 

1 
i#j. 

1 
(5) 

j#i 

We will deal with a canonical ensemble, so that 

where Ei is the configurational energy of the system in state i, /3 = (kT) ‘* 
k = Boltzmann’s constant, T = absolute temperature. Force-biased Monte Carlo 
(FBMC) and Metropolis Monte Carlo (MMC) differ in their choice of p$ ~ In its 
most general form, the only requirement on the MMC a priori transition matrix, is 
that it be symmetric (i.e., p$ =p$, i # j). In the simplest form of MMC, which we 
will use here, this symmetry requirement is met by the use of a uniform d~strib~t~Q~ 
over an interval. For this form of MMC: 

j not accessible from i, 

for all accessible j # i. 

In Eq. (8) MA(i) + 1 is the number of accessible states given ‘7.” In practice 
M,(i)4M. 

In FBMC the a priori transition matrix elements are obtained from 

i 
0, j not accessible from i 

p,T= 

i 

-ME, 

=yWg;k+l e-WE, for all accessiblej # i, 
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where il, is an adjustable constant between 0 and 1, the subscript B designating 
“Berne.” When 1, = 0 we recover equation 8. Physically, p$ for 1, > 0 acts as a 
biasing function that causes the trial particle to preferentially seek out low energy 
states. Hereafter we will use the abbreviation 2, = CI to mean “the FBMC algorithm 
with lB set equal to the value a.” 1, = 0 will mean “the MMC algorithm.” 

b. Scaling Down the Number of States 

Both the total number of system states M, and the number of system states 
accessible from one of them, MA(i) + 1, are astronomically large for a many-body 
fluid. Therefore it is impossible to do numerical work with the actual system trans- 
ition matrix. It is, however, conceivable that the MMC and FBMC algorithms have 
convergence-related characteristics that are intrinsic to the algorithm, i.e., that they 
display some generality and some degree of independence of the system and of the 
number of system states. Therefore it should be interesting, and perhaps ultimately 
profitable, to study the convergence characteristics of MMC and FBMC transition 
matrices of tractable size, which have some of the characteristics of the true 
underlying transition matrices. It was in this spirit that this work was undertaken. 

It is clearly imperative to reduce the actual semi-infinite number of states to some 
manageable number, and we have done this by going over from a continuous to a 
discrete energy distribution function. The actual energy distribution functions of 
liquids are roughly Gaussian (see, e.g., [2, Fig. 21 for that of an ST2 fluid). 
Therefore, we approximate these essentially continuous functions by Gauss-like 
histograms. Thus we replace the essentially infinite number of energy levels 
available to the system by a small finite number of energy levels. It will be con- 
venient to deal with single-particle energy distribution functions rather than the dis- 
tribution functions for the mean energy. The former will have the same shape as the 
latter (roughly Gaussian) but the standard dviation of the former will exceed that 
of the latter by a factor of @, where N is the number of particles [6, 91. 

The number of system states in each level, i.e. the system degeneracy, is deter- 
mined by the Gaussian nature of the energy distribution function and the 
Boltzmann nature of the state distribution function. Thus the relative system 
degeneracies 52(E), of two system levels “1” and ‘7 with reduced energies PE, and 
jEj are obtained as follows: 

fl(i) exp( - (DE- PEj)*/2a2) Ll(Ei) emPEt 
-Tz 

fr(j) exp( -(BE- j3Ej)2/202) =Q(E,) e--P6 
(10) 

where ,!? and CJ are the assumed mean and standard deviation of the continuous 
single-particle distribution function, andf,(i)/f,(j) is the ratio of probabilities that a 
randomly selected particle will be in levels “I” versus ‘7.” Also fi(i)/fl(j) is the ratio 
of systems in the ensemble in levels “z”’ and ‘7.” Of course this procedure allows us 
to obtain only relative degeneracies; to obtain absolute values of Q(E) we take the 
least degenerate (most stable) level to be singly degenerate. The number of system 
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states M on which our one-step matrix is defined, i.e., the order of the matrix fs 
therefore given by 

M= f QJE), L = number of levels (II) 
k=l 

Depending on the application, we will deal with a variety of matrices ranging in size 
up to 276 x 276. 

c. Building in Qperatiorlal Constraints 

(i) Limited accessibility. As mentioned previously, the number of system 
states accessible at each step, M,(i) + 1, is much less than the total number of 
system states M. While we cannot, because of size limitations, realisticaly incor- 
porate this feature, we can develop some understanding of the role of limited 
accessibility by doing calculations on a series of matrices for which the fraction of 
accessible states varies. 

Suppose, therefore, that up to (2N+ 1) states (up to N states above “i’ and up to 
N states below “i’), are accessible from each of the M states of our one-step matrix. 
Then the modified matrix elements for 0 < L, B 1 are obtained from 

/j=i+N 

1 

e--EBBE, / 
i’,,=~, epiBBEi, i#j, ii-j1 <IV 

pQ= (12) 
0, i#j, Ii-j\ >N, 

where the prime indicates i #j and truncation of the sum ifj goes below 1 or above 
M. The modified values of pii and pii are obtained by using Eq. (12) in Eqs. (5) and 
(6). Equation (12) means that up to N neighbouring states with indices above, an 
up to N neighbouring states with indices below each state, are accessible at each 
step. Our states will be numbered sequentially with energy (see Results (A), (C)) so 
that in cases of limited accessibility, the accessibility is to degenerate and to 
energetically neighbouring states. The constraint implicit in Eq. (12), that when j is 
inaccessible from i in one step then i must be inaccessible from j in one step is 
required in order to preserve detailed balance. 

(ii) Distortion in the force-bias. To use Eq. (12) with I., > 0 we must have 
values for E,, for all accessible j# i, when system is in state “i.” This is the main 
problem associated with FBMC. While it is possible in principle to know this, by 
taking a large number of successive gradients of the potential of the trial particle in 
state ‘7.:” and then Taylor expanding to high order around state “i,” SU& a 
calculation would be prohibitively time-consuming, especially in a Monte Carlo 
simulation. What is done in practice, is to take one gradient of the potential, i.e., to 
obtain the forces (and torques if nonzero) on the trial particle in state “I” and then 
to estimate E,, at all accessible J*S through a first-order Taylor expansion around 
E,. Therefore, the pz values used in practice (for LB > 0) will differ from those 
obtained by Eq. (12), and in this sense will be distorted. 
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We want to determine the consequences of working with distorted values of the 
P$‘S for 1, > 0, on both the convergence properties of the transition matrix, and on 
the stochastic characteristics of the Markov chains generated by the matrix. To do 
this we have to allow for the fact that the estimated values of Ej used to obtain p$ 
in practice, will differ from the actual Ej values required in Eq. (12). 

Here again, we are forced to resort to a rough approximation of the real 
situation. This is because these distortions depend on E,, on the (Ej - E,)‘s, the 
state conditions, the maximum move size, and the force law all in a complicated 
and largely unknown way. To get some feeling for what is involved, consider the 
complexity that arises as a consequence of different maximum allowed dis- 
placements. Small maximum displacements will usually involve E, estimates that are 
too low, since particles tend to be close to local minima where omission of the 
gradient of the force relative to the (small) force would produce an underestimate. 
However, larger maximum displacements can result in Ej estimates that are both 
low and high. High estimates result when the trial state involves a second physically 
neighbouring local minimum whose energy is below that of the original state. For 
example, a moderately large rotation of a water-like molecule will sometimes 
involve this latter phenomenon. 

Also our use of histograms rather than continuous distribution functions would 
create unphysical discontinuities in our results if we tried, for example, to bring 
( Ej - Ei) into the estimation of the error in Ej. 

In view of all this, and because we are after only the main trends induced by the 
use of distorted p,T’s we simplify the situation by writing: 

Ej= EJl + &4), j=l,M, (13) 

where 4 is a random number between - 1 and + 1, d is a parameter that controls 
the average uncertainty associated with our estimate of Ei, and E; is the actual 
energy of state j, which in the present artificial situation is known, Thus d = 0 gives 
no error, A = 1 gives an error that can be as large as 100% in either direction 
around the true value, etc. When using Eq. (13), to obtain the Ej values for 
Eq. (12), we applied it with 5 reselected anew (uniformly between - 1 and + l), 
once for each nonzero p$ element. Thus a systematic variation of A, for fixed AB 
and fixed accessibility N, provides a means of studying the influence of using a dis- 
torted bias on the convergence and stochastic properties that will be obtained. 

d. Calculation of Eigenvalues and a Convergence-Related Standard Deviation of the 
Matrices 

Nine years ago Valleau and Whittington in an interesting article [lo], drew 
attention to a property of the transition matrix, that can be used as a measure of 
the rate of convergence of a Markov chain to the limit distribution. For purposes of 
completeness we outline the relevant section of their work here. 
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If fi( f) is the probability that the system is in state “I” after t steps in a Markou 
chain, then 

and the solution of this set of difference equations, can be shown by substitution to 
be 

k=l 

where i, are the eigenvalues of l(pJ and ajk are constants related to the left eigen- 
vectors of i[piiii and to the initial conditions. Since (lp& is stochastic it will have one 
unit eigenvalue and all other eigenvalues will have modulii less than unity [I!], 
provided the chain is irreducible, i.e. provided every state is accessible, within a frnte 
number of steps, from every other state. Therefore in a long realization the con- 
vergence rate will be determined by that nonunit eigenvalue whose modulus is 
closest to unity. From Eq. (1.5) we see that small values of this eigenvalue corres- 
pond to rapid convergence rates. We adopt Valleau and Whittington’s designation, 
the “subdominant eigenvalue” for this quantity, and give it their symbol &,. &, 
should not be confused with the FBMC parameter A, which is defined with Eq. (9). 

Obviously, the reason that this property has previously been overlooked in com- 
paring the relative efficiencies of, for example, FBMC and Smart Monte Carlo [3] 
is that one cannot extract the subdominant eigenvalue from a matrix defined over a 
semi-infinite number of states. But our matrices, which are based on the states in 
our Gauss-like histograms, will be defined over only tens or hundreds of states. For 
these latter dimensions numerical methods exist for obtaining good approximations 
for the eigenvalues of a matrix [12-141. 

All our transition matrices were real and nonsymmetric. The procedure to get the 
eigenvalues involved transformation of the matrix to a real upper Hessenberg form 
followed by back-transformation to create the eigenvectors of the original matrix. 
The entire algorithm is available as a canned package in the IMSL library of most 
main frame computers [15]. The subdominant eigenvalues reported below were 
obtained with this algorithm. The accuracy of the values of /Isub is, for large 
matrices, difficult to assess. The accuracy deteriorates with increasing size and 
increasing degeneracy of the matrix. Therefore all our calculations were done in 
doubIe precision (15 figures). Also we report Asub values only for those matrices in 
which all the M eigenvalues converged, upon successive iterations, to within a 
preset standard. We believe that all our reported values of Asub are sufficiently 
accurate for our purpose, which is to compare relative values of ,&, and to see how 
A. sub is influenced by changes in our variables. 

Another convergence-related property of the transition matrix (also proposed in 
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[lo]), which has the value of being easier to obtain than Asub, is the standard 
deviation’: 

CJ= 2 fi : IPji-Al. (16) 
i= 1 j=l 

The idea here is that if pji =fj for all j, then we will reach the limit distribution from 
any arbitrary initial distribution in one step. Therefore small values of G should 
indicate rapid convergence rates and CJ should correlate positively with jlsub. 

RESULTS 

a. The Effect of the Number of States 

As previously mentioned, we bring the number of states down to a manageable 
number by discretizing the underlying energy distribution function, allotting one 
state to the least degenerate of the discretized levels, and then determining the 
remaining degeneracies by Eq. (10) and the total number of states M by Eq. (11). In 
this section we show that the use of a small number of states to represent the 
underlying distribution function does not seriously affect the calculated values of 
Lsub or G of the matrix. 

We start by considering the very simple system: a two-level, M-state system, in 
which: /lE, = 1, BE, = 2; Q2, = 8, = M/2; and the states are distributed as a 
Boltzmann distribution, i.e., fi( 1 )/f/(2) = e. We examine the influence of M and D on 
the values of Lsub and CJ corresponding to the underlying one-step transition matrix, 
with Ag = 0. 

For M = 2, the transition matrix obtained from Eqs. (5)(8), for this distribution 
function is 

p= l-e-’ 

( 

e-i 
1 0 1 

for which the eigenvalues are (1, -e-l), so that I&l = e-*. Using the numerical 
methods previously discussed, we have repeated the evaluation of Lsub for M = 4, 8, 
16, 32, 64, 128, and we have obtained CJ (by Eq. (16)) for M=2, 4, 8, 16, 32, 64, 
128, 256, 512. (Our numerical procedure for evaluating Asub did not converge in this 
example for M> 128). In this way we determine the influence of the number of 
states assigned to each discretized level in our histograms on the values of &,, and 
CJ of the corresponding one-step transition matrix. Of course, the mean and stan- 
dard deviation of the distribution function are invariant with M because we scale 52 
by the same factor in each level. So what we are doing here is seeing how, for an 

’ Our CT differs from the one in [lo] by a factor of A4. We have included A4 in our CJ since we will want 
to compare the CT values of matrices of different orders. 
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otherwise fixed distribution function, the number of states used to describe the dis- 
tribution function influences the values of &, and c of the corresponding transition 
matrix. 

The results are displayed in Fig. 1, from which it is seen that both /&,j and v” 
have very similar forms (they are equal for M= 2), they asymptotically approach a 
Iimiting value, and for M= 32 we are already within - 10% of the asymptotic value 
of either ;Isub or (T. Also the values of Isub and B become monotonic in M, provided 
M significantly exceeds the number of levels (here two). This is our first semi- 
rigorous indication that a relatively small number of states should be adequate for 
our purposes. 

We reinforce this point by doing a calculation similar to the one above, but 
applied to a distribution function that more closely resembles those typical of 
liquids. Consider now a g-level Gauss-like histogram distribution function, for 
which the relative probability of finding a particle in a level of energy PE, is 

fi( p7) = e-tPE, - u)hJ, (i7) 

Suppose @Z, = 1, fiE,= 3, and f3(Ei+l - E,)=0.25. Then a choice of u=2 and 
w = 1 in Eq. (17), together with Q, = 1 and the application of Eqs. (10) and (I B ) 

.7 

.6 

.5 

.4 

.3 

.2 

‘1 1, 2 3 4 5 6 7 6 9 10 j 

b2M 

FIG. 1. Variation of the subdominant eigenvalue isub and the standard deviation 8, with number of 
states M, for a one-step transition matrix based on a Metropolis algorithm and a 24eve1, M-state dis- 
tribution function with an equal degeneracy of M/2 in each level. Asub is defined under Eq. (15); o is 
defined by Eq. (16). The lines and curves were drawn by eye through the points, both here and in all the 
other figures. 
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results in the 39-state Gauss-like histogram distribution function with the 
degeneracies: Q, = I, 52, = 2, Q1 = 2, Q2, = 3, Q, = 4, Q;2, = 6, 52, = 7, G, = 7, G9 = 7. 
This distribution function is liquid-like in that its standard deviation (0.60273) is 
about 30% of its mean (1.9952). (For common liquids at ordinary state conditions 
single-particle distribution functions have standard deviations of N 20%50% of 
the mean; see text, Theory, part b and [6]). 

Again, we are interested in seeing how increasing the number of states, by 
proportionately scaling the number allocated to each level, will influence the values 
of Asub. Again, we do not change the mean or standard deviation of our distribution 
function by this scaling procedure. We have done this calculation for jVB = 4, and 1 
and N = M/3, 2M/3, and M in Eq. (12), and d = 0 in Eq. (13) (i.e., no distortion in 
the pg’s). The LB > 0 choice was dictated by the need for our numerical procedure 
to converge with increasing numbers of states; the choice d = 0 was made to ensure 
smoothness of the values of Lsub with increasing numbers of states. Different values 
of aB and N were used to study the M-dependence of the value of Asub when dif- 
ferent algorithms and different degrees of accessibility are used. It is seen from the 
entries in Table I and the lines in Fig. 2 that the values of &, change very 
gradually with increasing numbers of states. Also, except for the N= A&, i, = 1 
calculation (which has the least connection with real simulations) the slopes for the 
/Isub versus l/M plots are all similar to one another, and in all cases (except N= M, 
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.9- hB=l, N=y 

A AB=%, N=; 

.7- 
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.6- hg=l, N=ZM13 
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FIG. 2. Graphical display of the asymptotic behavior of Asub with M, for several values of N and I,, 
for transition matrices based on a g-level Gauss-like histogram distribution function. LB, a biasing 
parameter, is defined under Eq. (9). Additional details are given with Table I. 
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A,= 1) we see that with only 39 states &, is within -5% of the appropriate 
asymptotic value. 

In the calculations described in sections c-e below, the number of levels will be 9 
and the number of states will be 276. The foregoing results support the contention 
that our calculations should have some bearing on the semi-infinite system. 

b. Correlation between Asuh and CT 

In their study on transition matrices defined over relatively small numbers of 
states, Valleau and Whittington [lo] pointed out that a close correspondence 
existed between jlsub and g. Since cr is trivial to calculate relative to &,, we thought 
it worthwhile to further explore the extent of this correlation for the much larger 
matrices considered here. We already have the result from Fig. 1 that these two 
functions have strikingly similar functional forms. To examine the correlation in 
more detail we use the 9-level 39-state Gauss-like distribution function introduced 
in the previous section, to construct a series of transition matrices, using 
Eqs. (5)-(7), (12), and (13), for each of the 1, = 0, 4 and 1 algorithms. For each of 
these IzB values we re-evaluate Asub and CJ over a range of values of the near- 
neighbour accessibility function N. The results are shown in Fig. 3. As expected, we 

I ” ” 

.9- 

.8’ 

.6- 
A sub 

.5- 

FIG. 3. The correlation between /Isub and r~ for a series of transition matrices defined over a 9-level 
39-state Gauss-like histogram distribution function. In all cases A (in Eq. (13)) was zero. In each curve 
the left-most extreme point was for complete state-to-state accessibility, i.e., N = 39, and the rightmost 
extreme point was for the smallest accessibility considered, N = 5. Intermediate points are for N = 35, 30, 
25, 20, 15, 10, respectively, going from left to right. 
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see that &, and D go down (indicating more rapid convegence) as the state-to-state 
accessibility goes up. We also see that the correlation between isub and cr is fair for 
a fixed /I, but it breaks down when 1, is allowed to vary. This is seen from the fact 
that we get a family of curves and not one curve as ;le is allowed to vary over the 
range C&l. This implies that c can be used in place of Asub as a rough measure of the 
convergence rate of a particular algorithm, but it cannot be used in place of AsUb as 
a criterion for comparing the relative convergence rates of different algorithms. This 
is why we have used only /Isub as a criterion for convergence rates in sections c and 
e below. 

It is easy to show why A, = 1 for complete accessibility and distortion-free r-l:‘s 
gave the very low values of G and A,,,, shown in the two right-most columns of 
Table 1 and at the left of the A, = 1 curve in Fig. 3. Substituting Eqs. (7) and (9) 
into Eq. (5), and setting A, = 1 gives 

Since both denominators in the expressions for pij will be very close to C,“= r e /‘& 
for sufficiently large number of states, we get the result that for large numbers of 
states pii approaches J;- for all i. That is, for this choice of parameters the one-step 
transition matrix approaches the infinite-step transition matrix. Also 0, by Eq. ( 16), 
approaches zero for this matrix. Thus, if Eqs. (5) and (9) apply, i.e., if p$ is known 
without distortion, and every state is at each step accessible from every other state, 
our one-step transition matrix provides convergence to the limit distribution, from 
any arbitrary starting distribution, in a single step. It will become clear in the next 
section. that violating these conditions on p$ or on the accessibility, destroys this 
ideal situation. 

c. The Influence of Accessibility, X,, and distortion in p,T, on Asub 

We now examine how limited state-to-state accessibility (controlled by IV in 
Eq. (12)), distortion in p$ for ,I, >O (controlled by A in Eq. (13)), and different 
degrees of biasing (controlled by & in Eq. (12)) affect the value of &., of our one- 
step transition matrices. We are particularly interested in the possible bearing of 
these results to simulations on dense liquids at ordinary state conditions, so our 
histogram distribution function was defined over the 9-levels: jE, = -7 to 
BE, = -3 with ,8(E,+ 1 - Ei) = 0.50, and with u and u’ in Eq. (17) equal to - 5.0 and 
1:2, respectively. Then Eqs. (10) and (17) generate the 9-level, 276state, Gauss-like 
limit distribution with a mean BE= -4.9998, and a standard deviation = 1.0237. 
From Eq. (10) the states are distributed over the levels as.: 0, = 1, QZ = 3, 9, = 8, 
ad== 16, Q,=30, Jz,=45, Q,=57, 8,=61, Qg= 55. This single-particle dis- 
tribution function resembles that for dense liquids in that the standard deviatiora is 
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about 20% of the mean. The parameters were chosen also because with this choice, 
M was 276: a number which is small enough so that our numerical determination 
of Lb was feasible (in most cases), and large enough to provide values of Lsub that 
should be close to the asymptotic limit (see Section a and Fig. 2). This distribution 
was used with Eqs. (5)-(7), (12), and (13) to generate all the transition matrices 
used in this section. 

Our results are displayed in Fig. 4 as cross-sectional slices through the families of 
3-dimensional surfaces that arise. All the values of Lsub reported in this section were 
real and positive. 

Figure 4a show how N and d influence Asub at a fixed value of A, (= i). It is seen 
that provided N is low, ;Isu,, decreases, indicating more rapid convergence, as the 
number of accessible states available in one step increases, and this effect is greater, 
the smaller is d, i.e., the smaller the distortion in pi. This is obviously reasonable. 

Figure 4b shows how A and A, influence Jsub at fixed limited accessibility 
N ( = 100). The minima displayed by these graphs in the region 0 < Iz, < 1 are the 
first theoretically based indication that in an actual realization, FBMC may be 
expected to converge at an optimal rate if the value of ;1, is taken to be between 0 
and 1. Clearly, for all the values of A studied, we see that there exist values of A, 
between 0 and 1, that give rise to smaller values of Asub than are obtained with 

I;;1 
0 .2 .4 .6 .a 1.0 

1.0 N=50 w 

FIG. 4. The results in Figs. a-c are for transition matrices defined over the 9-level 276-state Gauss- 
like histogram distribution function described in part c of the Results section. Figure a shows the effect 
of N and d on IzSub at fixed 1, ( = f). Figure b shows the effect of d and ,I8 on Isub at fixed N (= 100). 
Figure c shows the effect of N and Aa on IsUb at fixed d (= 0.25). Missing sections in Figs. (a) and (c) are 
due to nonconvergence of the algorithm used to get rhe eigenvalues and one point (N= 150 d, = 0 in 
Fig. 4c) was omitted because of a suspected inaccuracy. 
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either ,I, = 0 or 1. As expected, smaller values of d (i.e., kss distorted p$‘s) result in 
smaller ;Isub ‘s. Also, the smaller the value of A, the more is the minimum in &, shif- 
ted toward higher values of A,. Again, this makes sense, because we would expect 
to make better use of FBMC, the less distorted is the biasing function py . Note 
however, from Fig. 4b, that even with A = 0, i.e., even with p$ known without dis- 
tortion, LB = 1 yields a lower value of jlsub than does i, = 1. Thus Fig. 4b 
demonstrates that a reduction of state-to-state accessibility from full accessibihty 
(i.e., a reduction of N from 276 to 100) is alone sufficient to make JUB = 4 more 
efftcient than LB = 1. 

The results in Figs. 4a and b provide the explanation of why the extremely low 
Isub’s (and a’s) found in Fig. 3 for du = 1 and complete accessibility are not 
realizable in practice. These very low values of asub are obtained only when there is 
complete state-to-state accessibility at each step, and when the pz’s are known 
without distortion. Figure 4b shows that when either or both of these conditions are 
not met, an intermediate value of AB between 0 and 1, provides a more rapidly con- 
vergent algorithm. 

Figure 4c illustrates how N and 3LB influence Asub at fixed A (= 0.25). These 
results again show the minimum in Asub at values of &, between 0 and 1, provided 
the accessibility N is less than complete, i.e., provided N < 276. (A~tbo~gb 
impassible to see with the scale used, there is a minimum at i,-0.1 for the N = SO 
curve). They also show how the minima are shifted to greater LB the greater the 
accessibility N. This is consistent with the results in Figs. 4a and b with the forego- 
ing discussion. 

d. Asymptotic Acceptance Rates 

AS the acceptance rate is a closely monitored quantity in a real simulation, we 
thought it worthwhile to present some of the accpetance rates that arose in our 
model calculations. 

The average acceptance rate R(t) at any step t in the Markov chain was obtained 
bY 

R(t) = f f,(t)AR;, (18) 
i=l 

where fi( f) is the probability of being in state i at step t, and AR, is the average 
acceptance rate for a move from state i to any other state j, that is accessible in one 
step. Thus, from Eqs. (2)-(4) ai is obtained from 

1 if ~icco ) piT , 1 -- 

ag= 
fi(dP$ 

&..qp; 

h(a) P$ 
otherwise 

(20) 
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and the meaning of C’ is as given with Eq. (12). The asymptotic mean acceptance 
rates we report (R,) were obtained by using the limit distribution ifi ) forf,(r) 
in Eq. (18). 

A sample of our results that illustrate the main characteristics are displayed in 
Figs. 5a and b. The results shown are for the 276-state, 9-level distribution function 
discussed in Section c. 

Figure 5a shows how i?, varies with increasing accessibility of states N, for p$ 
distortion-free, and for AB = 0, 0.5, and 1. As expected, with no distortion allowed in 
p$, the R,‘s are in the order R, (AB = 1) > R, (1, = 1) > a, (2, = 0), and that for 
AB = 0 or 1 8, decreases significantly with increasing accessibility. The very high 
values of R, for R, = 1 are clearly a consequence of disallowing distortion in p,T. It 
is interesting to compare the 8, values for LB = 1 in Fig. 5a with the &, values for 
,IB = 1 in Fig. 4b. This comparison reveals that the high acceptance rates at limited 
accessibilities shown in Fig. Sa (e.g., 8, = 0.902 at N = 100) do not correspond to 
particularly low values of jlsUtr at these limited accessibilities (&, = 0.867 for /ZB = 1, 
d = 0, N = 100). So high acceptance rates need not go hand-in-hand with rapid con- 
vergence rates. 

As seen from Fig. 5b the situation changes drastically when we allow for distor- 
tion in the p,T’s. Here we plot R, as a function of ;1, and d for a fixed value of the 

Rm :“I +b.& 
.6 

1.0 W 
A=0 

Rn 

A=.25 

A=.50 

A= 1.0 

.5r I 
0 .2 A .6 .6 1.0 K 

FIG. 5. The asymptotic acceptance rates (R,) for transition matrices defined over the distribution 
function described in the caption to Fig. 4 and part c of the results section. Figure a shows the depen- 
dence of R, on N and Iz, for fixed d (= 0). Figure b shows its dependence on 1, and A at fixed N 
(= 150). 
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accessibility function N ( = 150). Again, as expected, increasing the distortion in y;, 
generally results in a drop in 2, and this effect becomes greater the larger jeB. 

e. Stochastic Characteristics of the Markov Chains 

Here we examine the time evolution of the distribution functions that are 
generated by the various transition matrices. What we do is to monitor the stepwise 
development of the relevant characteristics of the generated distribution functions, 
starting from physically important initial distribution functions. At any time t, the 
new state distribution function {f(t)) is generated by the operation 

(ii ) 

where P is any of the one-step transition matrices under consideration, {f(l) 1 is the 
row vector 

{f(t)} =~fi(t),fr(t)....,fFn~~)~. (22) 

M, as before, is the number of states in the system and fi(t) is the normalized 
probability that the system is in state i after t steps. Since we deal with a canonical 
ensemble, 

(23) 

To make contact with the empirical results from real simulations, we define the 
energy level distribution function 

W)) = (F,(f), Fd~),...> F/i(~)), (24) 

where k is the number of energy levels in the system and F,(t) is the probability that 
the system is in any state of level 1 at time t. Thus, F,(t) is obtained from 

where G2,, as before, is the degeneracy of level 1. Equation (25) means we sum over 
those states ‘Y assigned to energy level 1. Thus the average energy of the system 
and its standard deviation, at each step, are calculated from 

respectively. The quantity SDE(t) in Eq. (27) is proportional to the square root of 
the configurational constant volume heat capacity (Cv) [2,6], and so we will use 
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SDE(t) as an index of G(t). Also, to learn about the time-dependence by which a 
particular transition matrix fills in the low- and high-energy wings of the energy dis- 
tribution we will simply monitor the values of F,(t) for the lowest and highest 
energy levels in our distribution function. The relative rate with which the lowest 
and highest energy levels develop toward their infinite time values, provides us with 
an index of how a particular algorithm, over time, generates low- and high-energy 
configurations. 

We also want to see how these stochastic characteristic correlate with the values 
of Lb of the generating matrices. This correlation is not at all obvious because Asub 
depends only on the transition matrix, while the distribution function at any finite 
time t depends on both the transition matrix and the initial distribution function. 
Therefore we picked three transition matrices from Section c for which values of 
Isub were calculable. Specifically all the generating matrices are defined over the 
same 9-level, 276-state distribution function used in Section c. The three matrices 
corresponded to dB = 0, 3, and 1. The maximum number of accessible neighbouring 
states N at each step was between 50 and 150, and A was taken to be 0.25 (d has 
no effect when & = 0). 

It remains to select the starting distribution functions (f(O)}. We do this by 
referring to a typical situation that arises in a real simulation. To evaluate functions 
that come in slowly, such as the heat capacities or correlation functions, one usually 
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.6 

IO 20 30 40 50 60 70 60 

FIG. 6. The effect of 1s on the rate of development of the standard deviation of the energy of the dis- 
tribution function described in the caption to Fig. 4 and in part c of the Results; t is the number of steps 
in the Markov chain, A = 0.25, and the initial distribution function is given by Eq. (28) for all the curves. 
SDE(co)= 1.0237. Fig. 6a, N=50; Fig. 6b, N= 150. 
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starts with a configuration that is in a sense typical of the limit distribution 
function, i.e., one that is energetically near the mean. In practice this is seIected 
from one of the configurations generated after an initial equihbriation period. Thus. 
one of our initial distribution functions was 

MN = i=lto42,44to276 
i=43. 

(28) 

The situation of having state 43 occupied was selected as a typical starting situation 
since, in our numbering scheme, 43 was in the middle of the 30 states assigned to 
level 5, whose energy was -5, which is close to the asymptotic mean of -4.9998. 
(See Results, Section c.) 

We thought it interesting also to include in this study, chains that are generated 
when starting from an atypically high- and atypically low-energy configuration. So 
two other initial distribution functions we used were 

i=2 to 276 
i= 1 

and 
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1 

(29) 

FIG. 7. The effect of As on the rate of development of the lowest energy level in the distribution 
function. The conditions and limit distribution function are identical to those in caption to Figs. Sa and 
b: F,(ix)=0.04391. 
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where we used Eqs. (29) and (30) to represent a low-energy and a high-energy 
initial configuration, respectively. 

Our results are displayed in Figs. 6 to 8 for walks starting from a centrally 
located state (Eq. (28)) and in Fig. 9 for walks starting from our lowest and highest 
energy states (Eqs. (29) and (30)). The walks starting from a centrally located state 
were done for N = 50 and 150 to demonstrate the influence of accessibility on the 
relative efficacy of the three algorithms. For purposes of clarity the plotted 
functions are all reduced with respect to their infinite time values. Therefore the 
“best” algorithm will be the one for which the plotted function approaches unity 
fastest. 

We see from Fig. 6, that with respect to the rate of development of the standard 
deviation of the energy, the ;lB = t algorithm is best in that it is either fastest (for 
N= 150) or roughly tied for fastest (for N= 50). Also, as the relative accessibility 
increases, we see that the i, = 1 algorithm improves relative to the 1, = 0 algorithm 
and that the /2, = f algorithm improves relative to both the 1, =0 and LB = 1 
algorithms, These results can be analyzed in terms of the results in Figs. 7 and 8 in 
which the rates of development of the lowest and the highest energy levels of our 
distribution function are displayed. It is seen from these figures that the 1, = 1 
algorithm (for both N= 50 and 150) fills in the lowest energy level from above 
(Figs. 6a and b) and the highest energy level from below (Figs. 7a and b) the 

0 12 16 20 24 26 32 

FIG. 8. The effect of IB on the rate of development of the highest energy level in the distribution 
function. The conditions and limit distribution function are identical to those in the caption to Figs. 6a 
and b, Fs( co) = 0.04423. 
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asymptotic value. Also, the approach to these asymptots is slower for LB = 1 than 
for .J.n = 4. Again the /zB = 4 algorithm displays the best overall performance in that 
it is either the fastest of the three (Figs. 7b, 8b) or essentially shares first place with 
the La =O algorithm (Figs. 7a, 8a). These figures also show that the LB =Q 
algorithm becomes slower relative to the J., = 4 and lB = 1 algorithms as the 
accessibility increases. 

An important feature of Figs. 6a, 7a, and 8a is their illustration of the tendency of 
the ,J, = 1 algorithm at relatively low accessibilities, to initially over-occupy low- 
energy levels at the expense of high-energy levels so as to produce an initial skewing 
of the distribution function toward its low-energy wing. This skewing results in the 
slow development of SDE(t) shown in Fig. 6a, since this latter quantity is positively 
correlated with the breadth of the energy distribution function. 

Also, the results in Figs. 6-8 are consistent with the eigenvalue results shown in 
Fig. 4c in that each of the curves in Fig. 4c for 50 < N < 150 and A = 0.25 displayed 
a minimum for 0 < 1, < 1 indicating more rapid convergence for these intermediate 
i, values. 

It is noteworthy that the relative superiority of the 1,, = 1 algorithm occurs also in 
Figs. 9a and b where we show, respectively, the rate of development of our lowest 
level starting from a state in our highest level (our highest numbered state), and the 

19(f)oL j ” 
FgP) 10 20 30 40 50 60 70 60 / 

FIG. 9. (a) The effect of 1, on the rate of development of F,. The conditions and distribution 
function are identical to those in the caption to Fig. 6, except here the starting distribution function is 
that given by Eq. (30), and here N = 100. (b) The effect of I., on the rate of development of pb. The 
conditions and distribution function are identical to those in the caption to Fig. 6. except here the 
starting distribution function is that given by Eq. (29). and N = 100. 
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development of our highest level starting from our lowest energy (and lowest num- 
bered) state. The relative efficiencies are seen to be (A, = f) > (A, = 1) > (A, = 0) for 
these walks. 

DISCUSSION 

We have found both from the behavior of Asub of our model transition matrices, 
and from the stochastic characteristics of the distribution functions that are 
generated by these matrices, that FBMC with 0 < 2, < 1 on the whole provided bet- 
ter convergence characteristics than either the I, = 0 or the 1, = 1 algorithms. The 
2, = 1 algorithm, in the initial stages of the walk, tended to produce an over- 
occupation of the low-energy levels at the expense of high-energy levels. This 
behavior was consistent with the slow heat capacity development that was found 
for the A, = 1 relative to the I, = 3 algorithm. 

It is worthwhile to note that an entirely different, previously published criterion, 
also leads to the conclusion that a choice of A, = 4 is to be preferred [S]. This 
criterion is to pick LB so that the initial slope of the acceptance probability vs step- 
size curve is zero; this occurs with 1, = $ and with “Smart Monte Carlo” but not 
with An = 0 or 1. 

The advantage entailed in using a value of LB intermediate between 0 and 1 at 
least for distribution functions of the kind adopted here* can be understood from 
the following qualitative argument. The A+, = 1 algorithm is optimal and vastly 
superior to any other algorithm, but only when the biasing function p$ is distor- 
tion-free and when there is complete state to state accessibility at each step. 
However, as soon as either of these conditions is violated, the use of 1, = 1 becomes 
a form of over-biasing, in the sense that jln = 1 causes the search for low-energy 
states to be unjustifiably overzealous. On the other hand, some extra effort to seek 
out low-energy states is needed, because with the distribution functions we used, 
there are fewer low- than high-energy states available. Therein is the potential 
weakness in using is = 0; by looking equally hard for low- and high-energy states, 
we occupy the low states too slowly, simply because without extra effort in the form 
of a bias they are not found frequently enough. Therefore, an intermediate value of 
LB (such as 4) does best, because it provides some bias in the search for low-energy 
states, without pushing the biasing to a point justified only by ideal circumstances. 

We are left with the important question of just how relevant these calculations 
and conclusions are to actual Monte Carlo simulations on dense molecular or 
atomic fluids. We have tried, by our choice of Gauss-like distribution functions and 
the introduction of limited accessibility and distortion in the p$‘s, to make these 
calculations as relevant as possible. Nevertheless, the necessity to simplify through 

2 Of course our conclusions have little relevance to systems for which the energy distribution functions 
are grossly non-Gaussian. Strongly differing distribution functions for different systems, may well 
account for much of the observed [16] system-dependence of the efficiency of the different algorithms. 
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the use of histograms, and the approximate way in which djstortion and 
accessibility was represented, all must contribute to a weakening of this connection. 

We believe that these calculations are more relevant than not to actual 
simulations on atomic or molecular liquids. This view is based partially on our own 
[6] and partially on other workers’ [ 16, 171 experience with FBMC simulations on 
such liquids. But this view must still be considered tentative since it does not come 
from a really systematic study. To put the matter to the test, we have run a series of 
simulations for the I, = 0, 4, and 1 algorithms, designed to specifically look for o’ur 
main predictions. An examination of these results is encouraging, as is seen from 
the article that immediately follows this one. 
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